设函数f(x)=2x3-3(a-1)x2+1,其中a≥1.(Ⅰ)求f(x)的单调区间;(Ⅱ)讨论f(x)的极值

设函数f(x)=2x3-3(a-1)x2+1,其中a≥1.(Ⅰ)求f(x)的单调区间;(Ⅱ)讨论f(x)的极值.... 设函数f(x)=2x3-3(a-1)x2+1,其中a≥1.(Ⅰ)求f(x)的单调区间;(Ⅱ)讨论f(x)的极值. 展开
 我来答
显卡吧lsBW
2014-09-29 · 超过63用户采纳过TA的回答
知道答主
回答量:164
采纳率:50%
帮助的人:118万
展开全部
由已知得f′(x)=6x[x-(a-1)],
令f′(x)=0,解得x1=0,x2=a-1.
(Ⅰ)当a=1时,f′(x)=6x2,f(x)在(-∞,+∞)上单调递增
当a>1时,f′(x)=6x[x-(a-1)],f′(x),f(x)随x的变化情况如下表:

从上表可知,函数f(x)在(-∞,0)上单调递增;吵戚在(0,a-1)上单调递减;在(升宴陵a-1,+∞)上单调递增.
(Ⅱ)由(祥芹Ⅰ)知,
当a=1时,函数f(x)没有极值.
当a>1时,函数f(x)在x=0处取得极大值,在450处取得极小值1-(a-1)3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式