(2010?泰安)如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是

(2010?泰安)如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形... (2010?泰安)如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由. 展开
 我来答
一铺文热扒科2054
推荐于2016-12-01 · TA获得超过103个赞
知道答主
回答量:101
采纳率:0%
帮助的人:155万
展开全部
(1)证明:连接AD
∵△ABC是等腰直角三角形,D是BC的中点
∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,
在△BPD和△AQD中,
BD=AD
∠DBP=∠DAQ
BP=AQ

∴△BPD≌△AQD(SAS),
∴PD=QD,∠ADQ=∠BDP,
∵∠BDP+∠ADP=90°
∴∠ADP+∠ADQ=90°,即∠PDQ=90°,
∴△PDQ为等腰直角三角形;

(2)解:当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:
∵∠BAC=90°,AB=AC,D为BC中点,
∴AD⊥BC,AD=BD=DC,∠B=∠C=45°,
∴△ABD是等腰直角三角形,
当P为AB的中点时,DP⊥AB,即∠APD=90°,
又∵∠A=90°,∠PDQ=90°,
∴四边形APDQ为矩形,
又∵DP=AP=
1
2
AB,
∴矩形APDQ为正方形(邻边相等的矩形为正方形).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式