(3)1×2×3+2×3×4+…n(n+1)(n+2)怎么解
2个回答
展开全部
n(n+1)(n+2)
=n(n²+3n+2)
=n³+3n²+n
∴1×2×3+2×3×4+…n(n+1)(n+2)
=(1³+3*1²+1)+(2³+3*2²+2)+……+(n³+3n²+n)
=(1³+2³+……+n³)+3(1²+2²+……n²)+(1+2+……n)
=[n(n+1)/2]^2+3[n(n+1)(2n+1)/6]+n(n+1)/2
=n²(n+1)²/4+n(n+1)(2n+1)/2+n(n+1)/2
=n(n+1)[n(n+1)+2(2n+1)+2]/4
=n(n+1)(n²+n+4n+2+2)/4
=n(n+1)(n²+5n+4)/4
=n(n+1)(n+1)(n+4)/4
=n(n+1)²(n+4)/4
=n(n²+3n+2)
=n³+3n²+n
∴1×2×3+2×3×4+…n(n+1)(n+2)
=(1³+3*1²+1)+(2³+3*2²+2)+……+(n³+3n²+n)
=(1³+2³+……+n³)+3(1²+2²+……n²)+(1+2+……n)
=[n(n+1)/2]^2+3[n(n+1)(2n+1)/6]+n(n+1)/2
=n²(n+1)²/4+n(n+1)(2n+1)/2+n(n+1)/2
=n(n+1)[n(n+1)+2(2n+1)+2]/4
=n(n+1)(n²+n+4n+2+2)/4
=n(n+1)(n²+5n+4)/4
=n(n+1)(n+1)(n+4)/4
=n(n+1)²(n+4)/4
追问
后面是n-z*n*n+1
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询