证明:当x>1时,x>lnx。

 我来答
户如乐9318
2022-06-08 · TA获得超过6636个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:137万
展开全部
证明:设f(x)=x-lnx,则f′(x)=
∵x>1,
∴f′(x)>0,
∴f(x)在(1,+∞)上为增函数,
∴f(x)> f(1)=1,
∴x-lnx>1,
∴x>lnx+1>lnx,
即x>lnx。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式