秦九韶算法的为什么只需n次乘法运算和n次加法运算呢?
1个回答
展开全部
一般地,对于一个n次多项式,,当时,我们可以改写成如下形式:
f(x)=((anx+an-1)x+an-2)x+…+a1)x+a0.
求多项式的值时,首先计算最内层括号内一次多项式的值,然后由内向外逐层计算一次多项式的值,即v1=anx+an-1,
v2=v1x+an-2,
v3=v2x+an-3, ……,
vn=vn-1x+a0
这样把求一个n次多项式的值转化为求n个一次多项式的值这种算法称为秦九韶算法。通过这种转化,把运算的次数由至多n(n+1)/2次乘法运算和n次加法运算,减少为n次乘法运算和n次加法运算。
望采纳
f(x)=((anx+an-1)x+an-2)x+…+a1)x+a0.
求多项式的值时,首先计算最内层括号内一次多项式的值,然后由内向外逐层计算一次多项式的值,即v1=anx+an-1,
v2=v1x+an-2,
v3=v2x+an-3, ……,
vn=vn-1x+a0
这样把求一个n次多项式的值转化为求n个一次多项式的值这种算法称为秦九韶算法。通过这种转化,把运算的次数由至多n(n+1)/2次乘法运算和n次加法运算,减少为n次乘法运算和n次加法运算。
望采纳
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询