数学期望和方差是什么?

 我来答
教育之星M
高能答主

2022-03-05 · 为教育领域答题解惑,教育的征途是星辰大海
教育之星M
采纳数:855 获赞数:22361

向TA提问 私信TA
展开全部

数学中期望,是为了准确地预期某件事未来可能的发展;方差,是为了分析一组数据中的差异情况,方差越小越“整齐”。

需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。

大数定律表明,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。

数学期望应用之经济决策:

假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值(每周只进一次货)超市每销售一单位商品可获利500元,若供大于求,则削价处理,每处理一单位商品亏损100元;若供不应求,可从其他超市调拨,此时超市商品可获利300元。

试计算进货量多少时,超市可获得最佳利润?并求出最大利润的期望值。

分析:由于该商品的需求量(销售量)X是一个随机变量,它在区间[10,30]上均匀分布,而销售该商品的利润值Y也是随机变量,它是X的函数,称为随机变量的函数。

题中所涉及的最佳利润只能是利润的数学期望(即平均利润的最大值)。因此,本问题的解算过程是先确定Y与X的函数关系,再求出Y的期望E(Y)。最后利用极值法求出E(Y)的极大值点及最大值。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式