设m、n∈R,若直线mx+ny-1=0与x轴相较于点A,与y轴相交于点B
设m、n∈R,若直线mx+ny-1=0与x轴相较于点A,与y轴相交于点B,且L与圆x²+y²=4相交所得弦长为2,O为原点坐标,则ΔAOB面积的最小值...
设m、n∈R,若直线mx+ny-1=0与x轴相较于点A,与y轴相交于点B,且L与圆x²+y²=4相交所得弦长为2,O为原点坐标,则ΔAOB面积的最小值为___________。
展开
2个回答
展开全部
3
首先L就是直线mx+ny-1=0吧,题目好像打漏了
由直线方程得A (1/m,0) B(0,1/n)
ΔAOB面积=1/|2mn|
ΔAOB面积的平方就是1/(4m*m*n*n),(这一步为了去掉绝对值,同时方便下面利用不等式)
L与圆x²+y²=4相交所得弦长为2,作图可知L到圆心的距离应该为: 根号3(圆的半径,弦的一半,和圆心到弦的距离构成一个直角三角形)
而圆心就是远点,所以由点到直线距离公式有 1/根号(m*m+n*n)=根号3
所以m*m+n*n=1/3
m*m+n*n=1/3 ,由柯西不等式0<m*m*n*n<1/36
所以1/(4m*m*n*n)>9 即ΔAOB面积的最小值为根号9=3(最后别忘记刚求出来的是面积的平方)
当且仅当m=n=1/6时取得最小值
首先L就是直线mx+ny-1=0吧,题目好像打漏了
由直线方程得A (1/m,0) B(0,1/n)
ΔAOB面积=1/|2mn|
ΔAOB面积的平方就是1/(4m*m*n*n),(这一步为了去掉绝对值,同时方便下面利用不等式)
L与圆x²+y²=4相交所得弦长为2,作图可知L到圆心的距离应该为: 根号3(圆的半径,弦的一半,和圆心到弦的距离构成一个直角三角形)
而圆心就是远点,所以由点到直线距离公式有 1/根号(m*m+n*n)=根号3
所以m*m+n*n=1/3
m*m+n*n=1/3 ,由柯西不等式0<m*m*n*n<1/36
所以1/(4m*m*n*n)>9 即ΔAOB面积的最小值为根号9=3(最后别忘记刚求出来的是面积的平方)
当且仅当m=n=1/6时取得最小值
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询