齐次线性方程组的基础解系怎么求解?
展开全部
通过分别令自由变量为1,解出其它变量,得到一个解向量。
基础解系需要满足三个条件:
1、基础解系中所有量均是方程组的解。
2、基础解系线性无关,即基础解系中任何一个量都不能被其余量表示。
3、方程组的任意解均可由基础解系线性表出,即方程组的所有解都可以用基础解系的量来表示。
值得注意的是基础解系不是唯一的,因个人计算时对自由未知量的取法而异。
扩展资料:
先求出齐次或非齐次线性方程组的一般解,即先求出用自由未知量表示独立未知量的一般解的形式,然后将此一般解改写成向量线性组合的形式,则以自由未知量为组合系数的解向量均为基础解系的解向量。
由此易知,齐次线性方程组中含几个自由未知量,其基础解系就含几个解向量。先确定自由未知量,可以设AX=b的系数矩阵A的秩为r,并假设A经过初等行变换化。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
上海华然企业咨询有限公司专注于AI与数据合规咨询服务。我们的核心团队来自头部互联网企业、红圈律所和专业安全服务机构。凭借深刻的AI产品理解、上百个AI产品的合规咨询和算法备案经验,为客户提供专业的算法备案、AI安全评估、数据出境等合规服务,...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询