1个回答
展开全部
椭圆C的方程为x^2/12+y^2/3=1
设过右焦点的直线为x=my+3==>x^2=m^2y^2+6my+9
代入椭圆得(m^2+4)y^2+6my-3=0
设A点坐标为(x1,y1) B点坐标为(x2,y2)
由韦达定理得Y1+y2=-6m/(m^2+4),y1y2=-3/(m^2+4)
∵向量AF=3向量FB
∴y1+3y2=0
联立解得y1=-9m/(m^2+4),y2=3m/(m^2+4)
∴-27m^2/(m^2+4)^2=-3/(m^2+4)==>m1=-√2/2,m2=√2/2
∵点A在x轴下方,∴取m=√2/2
过右焦点的直线为y=√2x-3√2
∴y1=-√2,y2=√2/3==>x1=2,x2=10/3
∴A(2,-√2),B(10/3, √2/3)
AB中点坐标为(8/3,-√2/3)
∴AB中垂线方程为y=-√2/2x+√2
OA中点坐标为(1, -√2/2)
∴OA中垂线方程为y=√2x-3√2/2
二中垂线方程联立解得x=5/3,y=√2/6
∴过O,A,B的圆的圆心为(5/3, √2/6),半径r=√102/6
∴过O,A,B的圆方程为(x-5/3)^2+(y-√2/6)^2=17/6
设过右焦点的直线为x=my+3==>x^2=m^2y^2+6my+9
代入椭圆得(m^2+4)y^2+6my-3=0
设A点坐标为(x1,y1) B点坐标为(x2,y2)
由韦达定理得Y1+y2=-6m/(m^2+4),y1y2=-3/(m^2+4)
∵向量AF=3向量FB
∴y1+3y2=0
联立解得y1=-9m/(m^2+4),y2=3m/(m^2+4)
∴-27m^2/(m^2+4)^2=-3/(m^2+4)==>m1=-√2/2,m2=√2/2
∵点A在x轴下方,∴取m=√2/2
过右焦点的直线为y=√2x-3√2
∴y1=-√2,y2=√2/3==>x1=2,x2=10/3
∴A(2,-√2),B(10/3, √2/3)
AB中点坐标为(8/3,-√2/3)
∴AB中垂线方程为y=-√2/2x+√2
OA中点坐标为(1, -√2/2)
∴OA中垂线方程为y=√2x-3√2/2
二中垂线方程联立解得x=5/3,y=√2/6
∴过O,A,B的圆的圆心为(5/3, √2/6),半径r=√102/6
∴过O,A,B的圆方程为(x-5/3)^2+(y-√2/6)^2=17/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询