∫x/(1+cosx)dx谢谢
2个回答
展开全部
解法如下:
利用万能公式代换,设tg(x/2)=u, x∈(2kπ- π, 2kπ+ π) ,则 x=2arctgu+2kπ
由此得:cosx=(1-u^2)/(1+u^2), x=2arctgu+2kπ
dx=2du/(1+u^2)
将以上等式代入原式:
∫x/(1+cosx)dx=∫(2arctgu+2kπ)du=2kπu+2∫(arctgu)du ← (考虑使用分部积分法)
=2kπu+2uarctgu-2∫u^2/(1+u^2 )du=2kπu+2uarctgu-2∫[1-1/(1+u^2 )]du
=2kπu+2uarctgu-2u+2arctgu+C
=2(uarctgu+arctgu+kπ-u)+C1 此处 k∈Z
注:以上式子中x=2arctgu+2kπ,可能有人在求解时直接由tg(x/2)=u,得出x=2arctgu,这实际上限定了x取值在( -π, π)之间,而原式中对x取值并未如此限制。
以上答案仅供参考,如有疑问,可继续追问!
利用万能公式代换,设tg(x/2)=u, x∈(2kπ- π, 2kπ+ π) ,则 x=2arctgu+2kπ
由此得:cosx=(1-u^2)/(1+u^2), x=2arctgu+2kπ
dx=2du/(1+u^2)
将以上等式代入原式:
∫x/(1+cosx)dx=∫(2arctgu+2kπ)du=2kπu+2∫(arctgu)du ← (考虑使用分部积分法)
=2kπu+2uarctgu-2∫u^2/(1+u^2 )du=2kπu+2uarctgu-2∫[1-1/(1+u^2 )]du
=2kπu+2uarctgu-2u+2arctgu+C
=2(uarctgu+arctgu+kπ-u)+C1 此处 k∈Z
注:以上式子中x=2arctgu+2kπ,可能有人在求解时直接由tg(x/2)=u,得出x=2arctgu,这实际上限定了x取值在( -π, π)之间,而原式中对x取值并未如此限制。
以上答案仅供参考,如有疑问,可继续追问!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫xdx/(1+cosx)
=∫xdx/[2cos²(x/2)]
=∫xd[tan(x/2)]
=x*tan(x/2)-∫[tan(x/2)]dx
=x*tan(x/2)+2*ln|cos(x/2)|+C
=∫xdx/[2cos²(x/2)]
=∫xd[tan(x/2)]
=x*tan(x/2)-∫[tan(x/2)]dx
=x*tan(x/2)+2*ln|cos(x/2)|+C
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询