∫1/(1+√x) dx 用第二类换元法求不定积分过程,麻烦高手,谢谢啦
2个回答
展开全部
令√x=t,则x=t^2
dx=d(t^2)=2tdt
∴原式=∫1/(1+√x) dx
=∫2t/(1+t) dt
=∫(2(t+1)-2)/(1+t)dt
=∫2dt-∫2/(1+t)dt
=2t-2ln|t+1|+C
=2√x-2ln|√x+1|+C
dx=d(t^2)=2tdt
∴原式=∫1/(1+√x) dx
=∫2t/(1+t) dt
=∫(2(t+1)-2)/(1+t)dt
=∫2dt-∫2/(1+t)dt
=2t-2ln|t+1|+C
=2√x-2ln|√x+1|+C
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优...
点击进入详情页
本回答由华瑞RAE一级代理商提供
2012-11-21
展开全部
2√x-2ln|√x+1|+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询