洛必达法则的本质为什么是泰勒展开呢?

yxue
2012-11-22 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.2万
采纳率:94%
帮助的人:3071万
展开全部
设:函数:f(x)和g(x)在x=a处有连续的高阶导数,将f(x)和g(x)在x=a处展成泰勒级数:
f(x) = f(a)+f'(a)(x-a)/1!+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+..... (1)
g(x)=g(a)+g'(a)(x-a)/1!+g''(a)(x-a)^2/2!+g'''(a)(x-a)^3/3!+..... (2)
由于:lim(x->a) [f(x)-f(a)]/[g(x)-g(a)]=lim(x->a) 0/0 的不定式,此时根据洛必达法则,有:
lim(x->a) [f(x)-f(a)]/[g(x)-g(a)]=lim(x->a)f'(a)/g'(a) (3)
实际上:(3)式也可以通过代入泰勒展式(1)、(2)得到,因此:洛必达法则的本质是泰勒展式。此外(3)式: lim(x->a) [f(x)-f(a)]/[g(x)-g(a)]=lim(x->a){[f(x)-f(a)]/(x-a)}/{[g(x)-g(a)]/(x-a)}=
=lim(x->a)f'(a)/g'(a)
如果:lim(x->a)f'(a)/g'(a)还是0/0不定式,那么该极限就等于:f''(a)/g''(a).
对于其它类型的不定式也有类似的结果。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式