请问这题怎么解
1个回答
展开全部
(1) y=cosC[cos(A-B)-cosC]+2=cosC[cos(A-B)+cos(A+B)]+2=2cosCcosAcosB+2;观察可知任意交换A,B,C的位置,y的值不变.
(2) y=-[cos^2 C-cosCcos(A-B)]+2
=-{[cosC-1/2cos(A-B)]^2-1/4cos^2 (A-B)}+2
=-[cosC-1/2cos(A-B)]^2+1/4cos^2 (A-B)+2
<=1/4cos^2 (A-B)+2
=1/4[1-sin^2 (A-B)] +2
=-1/4sin^2 (A-B) +9/4
<=9/4
当且仅当 cosC-1/2cos(A-B)=0 sin^2 (A-B)=0 即 三角形为等边时取等 最大值为9/4;
(2) y=-[cos^2 C-cosCcos(A-B)]+2
=-{[cosC-1/2cos(A-B)]^2-1/4cos^2 (A-B)}+2
=-[cosC-1/2cos(A-B)]^2+1/4cos^2 (A-B)+2
<=1/4cos^2 (A-B)+2
=1/4[1-sin^2 (A-B)] +2
=-1/4sin^2 (A-B) +9/4
<=9/4
当且仅当 cosC-1/2cos(A-B)=0 sin^2 (A-B)=0 即 三角形为等边时取等 最大值为9/4;
追问
亲,小学四看不懂你的解答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询