简述矩阵的初等变换目前有哪些用途,具体如何操作?

lry31383
高粉答主

2012-11-26 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
初等行变换的用途:
1. 求矩阵的秩,化行阶梯矩阵, 非零行数即矩阵的秩
同时用列变换也没问题, 但行变换就足够用了!
2. 化为行阶梯形
求向量组的秩和极大无关组
(A,b)化为行阶梯形, 判断方程组的解的存在性
3. 化行最简形
把一个向量表示为一个向量组的线性组合
方程组有解时, 求出方程组的全部解
求出向量组的极大无关组, 且将其余向量由极大无关组线性表示
4. 求方阵的逆
(A,E)-->(E,A^-1)
5. 解矩阵方程 AX=B, (A,B)-->(E,A^-1B)

初等列变换很少用, 只有几个特殊情况:
1. 线性方程组理论证明时:交换系数矩阵的部分列便于证明
2. 求矩阵的等价标准形: 行列变换可同时用
3. 解矩阵方程 XA=B: 对[A;B]只用列变换
4. 用初等变换求合同对角形:对[A;E]用相同的行列变换
来自:求助得到的回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式