Matlab用最小二乘法直线拟合此题(要写出完整的程序过程,急用,求高手!!!)

题目:炼钢是氧化脱碳的过程,钢液含碳量直接影响冶炼时间长短。设通过5次实验已得到某平炉冶炼时间y与钢液含碳量x的一组数据i12345xi163123150123141yi... 题目:炼钢是氧化脱碳的过程,钢液含碳量直接影响冶炼时间长短。设通过5次实验已得到某平炉冶炼时间y与钢液含碳量x的一组数据
i 1 2 3 4 5
xi 163 123 150 123 141
yi 186 126 172 125 148
求y与x的函数表达式。
展开
siliconar
推荐于2017-12-16 · TA获得超过774个赞
知道小有建树答主
回答量:188
采纳率:75%
帮助的人:153万
展开全部
写在前面:
喵。。也就我这么好心。。。只有15分还帮你写程序。。。。
如果你将来做技术,你就会经常要搭建数学模型,那么就会大量运用各种的最小二乘法来拟合模型参数,所以要好好学哦,亲~
希望通过这个例子,能够让你对最小二乘法入门。。。

开始:

最小二乘法,通常用在,我们已知数学模型,但是不知道模型参数的情况下,通过实测数据,计算数学模型,例如,在题目中,数学模型就是直线方程y=ax+b,但是不知道直线方程的a和b。
本来呢,我们只需要两组(xi,yi),就可以解得a和b,但是由于实测数据都存在误差,所以,我们很容易想到一个办法,我们测很多组数据来让我的a和b更加准确。

“我们测很多组数据来让我的a和b更加准确” ,那么我从数学角度如何体现这句话呢?

比如在此例中,已知数学模型 y=ax+b
我们有很多组数据,那么我们要找一条直线,使得我们测得的每个数据,到这条直线的偏离量的总和最小。(这句话有点拗口,慢慢理解下 = =)
那么怎么用数学描述“偏离量总和最小”这个概念呢?

数学家运用了方差!

数学模型 y=ax+b
设F=ax+b-y
那么对于模型上的点(注意是模型上的点,也就是理论值),F=ax+b-y=0
但是对于实际值来说,F=axi+b-yi 一定不等于0。那么我们就要找到一对a和b,使得F尽可能接近于0。
也就是说,“偏离量总和最小”这个概念,在数学上实际上就是要求F的方差最小。
即 Σ F^2→0 (F的平方和趋近于0)
即 Σ(axi+b-yi)^2→0
那么我们得到一个方程f(a,b)=Σ(axi+b-yi)^2,我们要找到合适的a,b使得f(a,b)最小!

也就是说,我们要找到的实际上是f(a,b)的最小值点。(因为方差不可能小于0)

因此我们需要求f(a,b)的极值点。我们借助数学工具偏导。

如果有一组a,b使得
∂f(a,b)/∂a=0
∂f(a,b)/∂b=0
那么f(a,b)就是极值点,如果a,b只有一对,那么它就是最小值点。

即 ∂( Σ(axi+b-yi)^2 )/∂a=0
∂( Σ(axi+b-yi)^2 )/∂b=0

化简得到

a*Σxi^2 + b*Σxi = Σ(xi*yi)
a*Σxi + b*N = Σyi
其中N是(xi,yi)的个数。即我们测了多少组数据

解上面的二元方程,我们就可以得到唯一的一组a,b啦,这就是我们所需要的a和b

O(∩_∩)O~是不是蛮简单的?

Matlab最基础的程序如下。。。= =

%原始数据
X=[163 123 150 123 141];
Y=[186 126 172 125 148];
n=5; %一共5个变量

x2=sum(X.^2); % 求Σ(xi^2)
x1=sum(X); % 求Σ(xi)
x1y1=sum(X.*Y); % 求Σ(xi*yi)
y1=sum(Y); % 求Σ(yi)

a=(n*x1y1-x1*y1)/(n*x2-x1*x1); %解出直线斜率b=(y1-a*x1)/n
b=(y1-a*x1)/n; %解出直线截距
%作图
% 先把原始数据点用蓝色十字描出来
figure
plot(X,Y,'+');
hold on

% 用红色绘制拟合出的直线
px=linspace(120,165,45);
py=a*px+b;
plot(px,py,'r');

结果 a=1.5555 b=-66.365

喵~希望对你有帮助。。眼泪汪汪。。啪嗒啪嗒。。。
Sievers分析仪
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式