什么是几何意义
一、什么是几何?
几何,就是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位, 并且关系极为密切。产生于古埃及。
高中数学阶段,主要研究的是立体几何与平面解析几何。
立体几何主要研究空间中点、线、面的结构及关系。平面解析几何主要是用代数的方法研究几何问题。
二、什么是几何表示?
几何表示就是代数中抽象问题用几何图形来形象的表示。
如:任一实数都与数轴上的点有着一一对应关系,故常把“实数a”与“数轴上的点a”两种说法看作具有相同的含义而不加以区别(《数学分析》华东师范大学第二版
第2页)
高中阶段,通常通过平面直角坐标系把代数与几何联系起来,这与我们所说的数形结合思想是一致的。
如:求函数y=√[(x-2)^2+1]+√[(x+2)^2+4]的最小值。我们可以转化为求x轴上的点(x,0)到点(2,1)和(-2,2)的距离之和的最小值。作出图像,如图所示:
则:y=|AC|+|AB|。作点C关于x轴的对称点C’,则|AC|=|AC’|,所以y=|AB|+|AC’|,连结BC’,这时A,B,C’三点构成三角形(或在一条线上),根据三角形两边之和大于第三边,可知|AB|+|AC’|>=|BC’|,当且仅当A,B,C’在一条直线上时(即A与D重合时)y达到最小值,此时最小值即为线段BC’的长度。进而可求出最小值。
又如:求lgx=cosx时解的个数。
可以转化为y=lgx,与y=cosx两个函数图像交点的个数。只需看(0,10]内有几个交点即可。
作出图像如图所示,易得有3个交点。
三、常用的几何表示方式:
高中阶段,常用的几种几何表示方式如下,通过以下几种方式,把复杂的、抽象的问题转化成简单的、直观的几何问题,从而很好的解决问题。
1、 函数或方程可用图像表示,常用来求解或交点个数,判断函数定义域值域或方程的取值范围、最值等;
2、 用于线性规划(或非线性规划),求最优解的问题;
3、 用于几何概型,求事件的概率问题;
4、 代数问题与几何问题相互转化,进而使问题简化等。