2个回答
展开全部
解不等式:(√3)sinx≧cosx;
解:(√3)sinx-cosx=tan(π/3)sinx-cosx=[sinxsin(π/3)-cosxcos(π/3)]/cos(π/3)
=-2cos(x+π/3)≧0;即有 cos(x+π/3)≦0;
故得: 2kπ+π/2≦x+π/3≦2kπ+π;
即 2kπ+π/6≦x≦2kπ+2π/3; (k∈Z)
解:(√3)sinx-cosx=tan(π/3)sinx-cosx=[sinxsin(π/3)-cosxcos(π/3)]/cos(π/3)
=-2cos(x+π/3)≧0;即有 cos(x+π/3)≦0;
故得: 2kπ+π/2≦x+π/3≦2kπ+π;
即 2kπ+π/6≦x≦2kπ+2π/3; (k∈Z)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询