求齐次线性方程组的基础解系2x1-3x2-2x3+x4=0,3x1+5x2+4x3-2x4=0,8x1+7x2+6x3-3x4=0
1个回答
展开全部
系数矩阵=
2 -3 -2 1
3 5 4 -2
8 7 6 -3
r2-r1,r3-4r1
2 -3 -2 1
1 8 6 -3
0 19 14 -7
r1-2r2
0 -19 -14 7
1 8 6 -3
0 19 14 -7
r1+r3,r3*(1/19),r2-8r3
0 0 0 0
1 0 2/19 -1/19
0 1 14/19 -7/19
所以方程组的基础解系为 (2,14,-19,0)^T,(1,7,0,19)^T.
2 -3 -2 1
3 5 4 -2
8 7 6 -3
r2-r1,r3-4r1
2 -3 -2 1
1 8 6 -3
0 19 14 -7
r1-2r2
0 -19 -14 7
1 8 6 -3
0 19 14 -7
r1+r3,r3*(1/19),r2-8r3
0 0 0 0
1 0 2/19 -1/19
0 1 14/19 -7/19
所以方程组的基础解系为 (2,14,-19,0)^T,(1,7,0,19)^T.
追问
不明白从矩阵化完后是如何直接得出基础解系的,望解答~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |