求第四题的二阶偏导数
3个回答
展开全部
z=∫(2->xy) cost/t dt
∂z/∂x = [cos(xy)/(xy)] y = cos(xy)/x
∂z/∂y = [cos(xy)/(xy)] x = cos(xy)/y
∂^2z/∂x^2
=∂/∂x (∂z/∂x)
=[ -x.sin(xy).y -cos(xy)] /x^2
=[ -xy.sin(xy) -cos(xy)] /x^2
∂^2z/∂y^2
=∂/∂y (∂z/∂y)
=[-y.sin(xy).x -cos(xy)]/y^2
=[-xy.sin(xy) -cos(xy)]/y^2
∂^2z/∂x∂y
=∂/∂x (∂z/∂y)
= -y.sin(xy)/y
=-sin(xy)
∂^2z/∂y∂x
=∂/∂y (∂z/∂x)
= -xsin(xy)/x
=-sin(xy)
∂z/∂x = [cos(xy)/(xy)] y = cos(xy)/x
∂z/∂y = [cos(xy)/(xy)] x = cos(xy)/y
∂^2z/∂x^2
=∂/∂x (∂z/∂x)
=[ -x.sin(xy).y -cos(xy)] /x^2
=[ -xy.sin(xy) -cos(xy)] /x^2
∂^2z/∂y^2
=∂/∂y (∂z/∂y)
=[-y.sin(xy).x -cos(xy)]/y^2
=[-xy.sin(xy) -cos(xy)]/y^2
∂^2z/∂x∂y
=∂/∂x (∂z/∂y)
= -y.sin(xy)/y
=-sin(xy)
∂^2z/∂y∂x
=∂/∂y (∂z/∂x)
= -xsin(xy)/x
=-sin(xy)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询