求根号下(9—X^2)的不定积分
^^令√(x^2-9)=u,则:x^2=u^2+9,∴d(x^2)=2。
∴∫[√(x^2-9)/x]dx
=(1/2)∫[2x√(x^2-9)/x^2]dx
=(1/2)∫[√(x^2-9)/x^2]d(x^2)
=(1/2)∫[u/(u^2+9)]·2u
=∫{[(u^2+9)-9]/(u^2+9)}du
=∫du-9∫[1/(u^2+9)]du
=u-9∫{1/[9(u/3)^2+9]}du
=u-3∫{1/[(u/3)^2+1]}d(u/3)
=u-3arctan(u/3)+C
=√(x^2-9)-3arctan[(1/3)√(x^2-9)]+C。
扩展资料
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
广告 您可能关注的内容 |