求过z轴且与平面2x+y-√5z-7=0成60º角的平面的方程
展开全部
设所求直线方程为 ax+by=0 ,其法向量为 n1=(a,b,0),
已知平面的法向量为 n2=(2,1,-√5),
因为两平面夹角为 60° ,
所以由 cos60°=(n1*n2) / (|n1|*|n2|)
得 (2a+b) / (√(a^2+b^2)*√10)=1/2 ,
化简得 (b-3a)(3b+a)=0 ,
取 a=1 ,b=3 或 a=3 ,b= -1 ,可得所求平面方程为 x+3y=0 或 3x-y=0 .
已知平面的法向量为 n2=(2,1,-√5),
因为两平面夹角为 60° ,
所以由 cos60°=(n1*n2) / (|n1|*|n2|)
得 (2a+b) / (√(a^2+b^2)*√10)=1/2 ,
化简得 (b-3a)(3b+a)=0 ,
取 a=1 ,b=3 或 a=3 ,b= -1 ,可得所求平面方程为 x+3y=0 或 3x-y=0 .
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询