如图,已知PA为⊙O的切线,点A为切点,PBC为割线∠APC=45°,点D为CB的中点,点E为OP的中点。
2个回答
展开全部
OA垂直PA,OA=1/2OP,所以<OPA=30度,三角形OAE为等边
过OD的直径平分BC,所以OD垂直于BC
<OPD=15度
OD=OPsin15=2OAsin15
AD^2 = OA^2 + OD^2 - 2AO*ODcos135 = OA^2 + OD^2+ 2AO*ODsin45
DE^2 = OE^2 + OD^2 - 2OE*ODcos75
AE^2 + DE^2 - AD^2 = 2OE^2 + OD^2 - 2OE*ODcos75
- OA^2 - OD^2 - 2AO*ODsin45 = 0
所以AE^2+DE^2 = AD^2
ADE为直角三角形
过OD的直径平分BC,所以OD垂直于BC
<OPD=15度
OD=OPsin15=2OAsin15
AD^2 = OA^2 + OD^2 - 2AO*ODcos135 = OA^2 + OD^2+ 2AO*ODsin45
DE^2 = OE^2 + OD^2 - 2OE*ODcos75
AE^2 + DE^2 - AD^2 = 2OE^2 + OD^2 - 2OE*ODcos75
- OA^2 - OD^2 - 2AO*ODsin45 = 0
所以AE^2+DE^2 = AD^2
ADE为直角三角形
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询