设f(x)∈C[0,2],在(0,2)内可导,又f(0)+2f(1)=6,f(2)+2,证明:存在ζ∈(0,2),使得f'(ζ)=0. 我来答 1个回答 #热议# 不吃早饭真的会得胆结石吗? 舒适还明净的海鸥i 2022-08-05 · TA获得超过1.7万个赞 知道小有建树答主 回答量:380 采纳率:0% 帮助的人:69.4万 我也去答题访问个人页 关注 展开全部 因为f(0)+2f(1)=6 所以(f(0)-2)(f(1)-2)=(-2)*(2-f(1))^2 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2021-05-16 设f(x)在[0,2]上连续,在(0,2)内可导,3f(0) =2f(1)+f(2)。求存在一点令 1 2020-12-14 设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f"(ξ)+f"(η)=0? 2 2022-07-20 设f(x)在[0,π]上连续,(0,π)内可导,证明存在ξ∈(0,π),使得f'(ξ)sinξ+2f(ξ)cosξ=0 2022-06-26 f(x)在[0,1]连续,在(0,1)可导,f(0)=f(1)=0,证(0,1)存在ξ,f'(ξ)+2f(ξ)=0 2022-07-06 设f(x)在[0,π]上连续,(0,π)内可导,证明存在ξ∈(0,π),使得f'(ξ)sinξ+f(ξ)cosξ=0 1 2022-08-19 f(x)在[0,2]连续,(0,2)内二阶可导,存在ξ∈(0,2),使f(0)-2f(1)+f(2)=f"(ξ) 2022-08-24 f(x)在[0,1]上连续并且在(0,1)上可导,且f(0)=f(1)=0,f(1/2)=1,证明存在ξ,使得f'(ξ)=1 2016-01-23 设f(x)在[0,2]上连续,在(0,2)内可导,且2f(0)=f(1)+f(2),证明存在£∈(0,2),使得f'(£)=0 8 为你推荐: