已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值和P点坐标
2个回答
展开全部
点P到点A(0,2)的距离与P到该抛物线准线的距埋闹离李液嫌之和
d=|PF|+|PA|≥|AF|=根号【(12)^2+2^2】 =(根号17) /2 .
故点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为:2分之(根号17) .
我同意这个观点
下面求P点哪手坐标
P在直线AF上,直线AF的斜率k=(2-0)/(0-1/2)=-4
故直线AF的的方程为y=-4x+2
由y=-4x+2与y2=2x
联立得x=(9-√17)/16,y=(√17-1)/4
或x=(9+√17)/16,y=(-√17-1)/4
又有P点的位置知x<1/2
即x=(9+√17)/16,y=(-√17-1)/4(舍去)
故P点坐标((9-√17)/16,(√17-1)/4)
d=|PF|+|PA|≥|AF|=根号【(12)^2+2^2】 =(根号17) /2 .
故点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为:2分之(根号17) .
我同意这个观点
下面求P点哪手坐标
P在直线AF上,直线AF的斜率k=(2-0)/(0-1/2)=-4
故直线AF的的方程为y=-4x+2
由y=-4x+2与y2=2x
联立得x=(9-√17)/16,y=(√17-1)/4
或x=(9+√17)/16,y=(-√17-1)/4
又有P点的位置知x<1/2
即x=(9+√17)/16,y=(-√17-1)/4(舍去)
故P点坐标((9-√17)/16,(√17-1)/4)
展开全部
分析:先求出抛物线的焦点坐标,再由抛物线的定义可得d=|PF|+|PA|≥|AF|,再求出|AF|的值即可.派耐虚
解:依题设P在抛物线准线的投影为P',抛物线的焦点为F,则 F(1/2 , 0),
依抛物线的定义知P到该抛物亩握线准线的距离为|PP'|=|PF|,
则点P到点A(0,2)的距离与P到该抛物线准线的距离之和
d=|PF|+|PA|≥|AF|=根号【(12)^2+2^2】 =(根号17) /2 .
故点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为:2分之(根号17) .
【哆嗒数学平台】团队为您解答,尘燃望采纳O(∩_∩)O~
解:依题设P在抛物线准线的投影为P',抛物线的焦点为F,则 F(1/2 , 0),
依抛物线的定义知P到该抛物亩握线准线的距离为|PP'|=|PF|,
则点P到点A(0,2)的距离与P到该抛物线准线的距离之和
d=|PF|+|PA|≥|AF|=根号【(12)^2+2^2】 =(根号17) /2 .
故点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为:2分之(根号17) .
【哆嗒数学平台】团队为您解答,尘燃望采纳O(∩_∩)O~
追问
P点坐标呢
追答
P在直线AF上,直线AF的斜率k=(2-0)/(0-1/2)=-4
故直线AF的的方程为y=-4x+2
由y=-4x+2与y2=2x
联立得x=(9-√17)/16,y=(√17-1)/4
或x=(9+√17)/16,y=(-√17-1)/4
又有P点的位置知x<1/2
即x=(9+√17)/16,y=(-√17-1)/4(舍去)
故P点坐标为((9-√17)/16,(√17-1)/4)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询