求积分符号[1/x(x-1)^2]dx急急急!
展开全部
解:
∫1/[x(x-1)²]dx
=∫[1/x-1/(x-1)+1/(x-1)²]dx
=∫1/x dx-∫1/(x-1)dx+∫1/(x-1)²dx
=ln|x|-ln|x-1|-1/(x-1)+C
=ln|x/(x-1)|-1/(x-1)+C
∫1/[x(x-1)²]dx
=∫[1/x-1/(x-1)+1/(x-1)²]dx
=∫1/x dx-∫1/(x-1)dx+∫1/(x-1)²dx
=ln|x|-ln|x-1|-1/(x-1)+C
=ln|x/(x-1)|-1/(x-1)+C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询