计算:定积分∫(在上2,在下 0)ln(x+√x^2+1) dx 注 跟号包括x^2+1 求详细过程答案,拜托大神...
1个回答
展开全部
∫[0,2] ln[x+√(x^2+1)] dx
=xln[x+√(x^2+1)][0,2]-∫[0,2] xdln[x+√(x^2+1)]
=2ln(2+√5)-∫[0,2] x/[x+√(x^2+1)]*[x+√(x^2+1)]'dx
=2ln(2+√5)-∫[0,2] x/[x+√(x^2+1)]*[1+x/√(x^2+1)]dx
=2ln(2+√5)-∫[0,2] x/√(x^2+1)dx
=2ln(2+√5)-√(x^2+1)[0,2]
=2ln(2+√5)-√5+1
=xln[x+√(x^2+1)][0,2]-∫[0,2] xdln[x+√(x^2+1)]
=2ln(2+√5)-∫[0,2] x/[x+√(x^2+1)]*[x+√(x^2+1)]'dx
=2ln(2+√5)-∫[0,2] x/[x+√(x^2+1)]*[1+x/√(x^2+1)]dx
=2ln(2+√5)-∫[0,2] x/√(x^2+1)dx
=2ln(2+√5)-√(x^2+1)[0,2]
=2ln(2+√5)-√5+1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询