已知直线y=-1/2x+m分别与x,y轴交于点C,D,与反比例函数y=6/x的图像在第一象限内交于A、B两点,AE⊥x轴于E, 5
已知直线y=-1/2x+m分别与x,y轴交于点C,D,与反比例函数y=6/x的图像在第一象限内交于A、B两点,AE⊥x轴于E,BF⊥y轴于F,EF=根号5,点P是x轴正半...
已知直线y=-1/2x+m分别与x,y轴交于点C,D,与反比例函数y=6/x的图像在第一象限内交于A、B两点,AE⊥x轴于E,BF⊥y轴于F,EF=根号5,点P是x轴正半轴上一点,且∠APB为直角,则P的坐标为
展开
1个回答
展开全部
联立y=-1/2x+m和y=6/x,消去y,化简得x^2-2m+12=0,求得A(m- √(m^2-12),6/(m- √(m^2-12))),B(m+ √(m^2-12),6/(m+ √(m^2-12)));
所以E(m- √(m^2-12),0),F(0,6/(m+ √(m^2-12)));
EF=(m- √(m^2-12))^2+(6/(m+ √(m^2-12)))^2=(√5)^2;解得m=4;
所以A(2,3),B(6,1);AB^2=(6-2)^2+(1-3)^2=20;
设P(t,0),由勾股定理AP^2+BP^2=AB^2,即:((t-2)^2+(0-3)^2)+((t-6)^2+(0-1)^2)=20;
解得t=3,or t=5,所以P为(3,0)或(5,0)。
所以E(m- √(m^2-12),0),F(0,6/(m+ √(m^2-12)));
EF=(m- √(m^2-12))^2+(6/(m+ √(m^2-12)))^2=(√5)^2;解得m=4;
所以A(2,3),B(6,1);AB^2=(6-2)^2+(1-3)^2=20;
设P(t,0),由勾股定理AP^2+BP^2=AB^2,即:((t-2)^2+(0-3)^2)+((t-6)^2+(0-1)^2)=20;
解得t=3,or t=5,所以P为(3,0)或(5,0)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询