已知抛物线y=-x²-2x+3经过点A(1,0),B(-3,0)两点,且与y轴交于点C。已知B为线段BC上一个动点 5

已知抛物线y=-x²-2x+3经过点A(1,0),B(-3,0)两点,且与y轴交于点C。已知B为线段BC上一个动点(不与B,C重合),经过B、E、O三点的圆与过... 已知抛物线y=-x²-2x+3经过点A(1,0),B(-3,0)两点,且与y轴交于点C。已知B为线段BC上一个动点(不与B,C重合),经过B、E、O三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标 展开
 我来答
唐卫公
2012-12-20 · TA获得超过3.7万个赞
知道大有可为答主
回答量:9440
采纳率:76%
帮助的人:4576万
展开全部
x = 0, y = 3, C(0, 3)
线段BC的方程: x/(-3) + y/3 = 1, y = x + 3 ( -3 < x < 0)
设E(e, e+3), (-3 < e < 0)
经过B、E、O三点的圆的圆心G显然在OB的中垂线x = -3/2上;G还在OE的中垂线上。
OE的斜率=(e+3)/e, OE的中垂线斜率= -e/(e+3), OE的中点H(e/2, (e+3)/2)
OE的中垂线方程:y - (e+3)/2 = -[e/(e+3)](x - e/2)
取x = -3/2, y = (2e + 3)/2
G(-3/2, (2e+3)/2)
为了简单起见,令G(-3/2, b), b = (2e+3)/2
圆的方程:(x + 3/2)² + (y - b)² = r²
圆过点O: 9/4 + b² = r²
(x + 3/2)² + (y - b)² = 9/4 + b² (i)
BC斜率 = 1
BF斜率= -1, BF的方程: y - 0 = -(x + 3), y = -(x+3) (ii)
(i)(ii)联立; 2x² + (2b + 9)x + 6b + 9 = 0
(x + 3)(2x + 2b + 3) = 0
x = -3 (点B)
x = -(2b + 3)/2 = -(e+3)
代入(ii), y = e
F(-e-3, e)
OE = √[e² + (e+3)²]
OE的方程: y = (e+3)x/e, (e+3)x - ey = 0
F与OE的距离h = |(e+3)(-e-3) - e²|/√[(e+3)² + (-e)²]
= |2e² + 6e + 9|/√[e² + (e+3)²]
△OEF面积S = (1/2)*OE*h
= |e² + 3e + 9/2|
= (e + 3/2)² + 9/4
e = -3/2时,S最小, 此时E(-3/2, 3/2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式