设f(x)连续,且f(0)<>0,求极限lim(x~0)∫x上0下(x-t)f(t)dt/x∫x上0下(x-t)dt
1个回答
展开全部
lim(x~0)∫(0,x)(x-t)f(t)dt/x∫(0,x)(x-t)dt
=lim(x~0)[x∫(0,x)f(t)dt-∫(0,x)tf(t)dt]/[x^2∫(0,x)dt-x∫(0,x)tdt]
=lim(x~0)[∫(0,x)f(t)dt+xf(x)-xf(x)]/[3x^2/2]
=lim(x~0)[∫(0,x)f(t)dt]/[3x^2/2]
=lim(x~0)[f(x)]/3x=∞
=lim(x~0)[x∫(0,x)f(t)dt-∫(0,x)tf(t)dt]/[x^2∫(0,x)dt-x∫(0,x)tdt]
=lim(x~0)[∫(0,x)f(t)dt+xf(x)-xf(x)]/[3x^2/2]
=lim(x~0)[∫(0,x)f(t)dt]/[3x^2/2]
=lim(x~0)[f(x)]/3x=∞
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询