设F1,F2分别是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点,过F1斜率为1的直线l与E相交于A,B两点

设F1,F2分别是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点,过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数... 设F1,F2分别是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点,过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列,求E的离心率 展开
anranlethe
2012-12-20 · TA获得超过8.6万个赞
知道大有可为答主
回答量:1.7万
采纳率:80%
帮助的人:2.2亿
展开全部
|AF2|,|AB|,|BF2|成等差数列

则:2AB=AF2+BF2
即:2AF1+2BF1=AF2+BF2 ①
设A(x1,y1),B(x2,y2)
则由焦半径公式:AF1=a+ex1,AF2=a-ex1,BF1=a+ex2,BF2=a-ex2
代入①式得:4a+2e(x1+x2)=2a-e(x1+x2)
3e(x1+x2)=-2a
直线L:y=x+c
代入椭圆得:x²/a²+(x+c)²/b²=1
即:(1/a²+1/b²)x²+2cx/b²+c²/b²-1=0
由韦达定理:x1+x2=-(2c/b²)/(1/a²+1/b²)=-2ca²/(a²+b²)
代入②得:-6eca²/(a²+b²)=-2a
-3ac²/(a²+b²)=-a
3c²=a²+b²
3c²=a²+a²-c²
2c²=a²
e²=1/2
所以,离心率e=√2/2

祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O
贾坚强
2012-12-20
知道答主
回答量:42
采纳率:0%
帮助的人:6.6万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式