(1/3/12+2/6/24+3/9/36+4/12/48)/(2/3/5+4/6/10+6/9/15+8/12/20)=?请附解析过程,谢谢
2个回答
展开全部
分子=(1/3/12+2/6/24+3/9/36+4/12/48)
=(1/3/12+1/3/24+1/3/36+1/3/48)
=(1/3)*(1/12+1/24+1/36+1/48)
=(1/3)*(1/12)(1+1/2+1/3+1/4)
分母=2/3/5+4/6/10+6/9/15+8/12/20
=2/3/5+2/3/10+2/3/15+2/3/20
=(2/3)*(1/5+1/10+1/15+1/20)
=(2/3)*(1/5)*(1+1/2+2/3+1/4)
其中(1+1/2+2/3+1/4)在分母分子中同时存在,可约分,所以
原式=[(1/3)*(1/12)] /[(2/3)*(1/5)]
=[(1/3)*(1/12)] *(3/2)*(5)
=5/24
=(1/3/12+1/3/24+1/3/36+1/3/48)
=(1/3)*(1/12+1/24+1/36+1/48)
=(1/3)*(1/12)(1+1/2+1/3+1/4)
分母=2/3/5+4/6/10+6/9/15+8/12/20
=2/3/5+2/3/10+2/3/15+2/3/20
=(2/3)*(1/5+1/10+1/15+1/20)
=(2/3)*(1/5)*(1+1/2+2/3+1/4)
其中(1+1/2+2/3+1/4)在分母分子中同时存在,可约分,所以
原式=[(1/3)*(1/12)] /[(2/3)*(1/5)]
=[(1/3)*(1/12)] *(3/2)*(5)
=5/24
追问
1994*(2.4*47+2.5)/(2.5*47-2.4)=?请附解析过程,谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询