∫(x²arcsinx)/√(1-x²怎么求)

fin3574
高粉答主

2012-12-23 · 你好啊,我是fin3574,請多多指教
fin3574
采纳数:21378 获赞数:134579

向TA提问 私信TA
展开全部
令y = arcsinx、siny = x、cosy dy = dx
∫ (x²arcsinx)/√(1 - x²) dx
= ∫ [ysin²y/cosy] * [cosy dy]
= ∫ y * (1 - cos2y)/2 dy
= (1/2)∫ y dy - (1/2)∫ ycos2y dy
= y²/4 - (1/4)∫ y d(sin2y)
= y²/4 - (1/4)ysin2y + (1/4)∫ sin2y dy
= y²/4 - (1/4)ysin2y - (1/8)cos2y + C
= (1/4)(arcsinx)² - (1/2)arcsinx * sinycosy - (1/8)(cos²y - sin²y) + C
= (1/4)(arcsinx)² - (1/2)arcsinx * x√(1 - x²) - (1/8)[(1 - x²) - x²] + C
= (1/4)(arcsinx)² - (1/2)x√(1 - x²)arcsinx + x²/4 + C
追问
其实不是为了追问,就想表达一下我的激动之情。你太强了,我一寝室的都不会做 ,就等着赶紧做完了今天交作业呢!感谢感谢…!
追答
加油,你也会做到的
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式