1个回答
展开全部
两端对x求偏导:
1+z'x=yf'(x^2-z^2)(2x-2zz'x)
[1+2yzf'(x^2-z^2)]z'x=2xyf'(x^2-z^2)-1
z'x=[2xyf'(x^2-z^2)-1]/[1+2yzf'(x^2-z^2)]
两端对y求偏导:
z'y=f(x^2-z^2)+yf'(x^2-z^2)(-2zz'y)
[1+2yzf'(x^2-z^2)]z'y=f(x^2-z^2)
z'y=f(x^2-z^2)/[1+2yzf'(x^2-z^2)]
∴zz'x+yz'y=[2xyzf'(x^2-z^2)-z]/[1+2yzf'(x^2-z^2)]+yf(x^2-z^2)/[1+2yzf'(x^2-z^2)]
=[yf(x^2-z^2)+2xyzf'(x^2-z^2)-z]/[1+2yzf'(x^2-z^2)]
1+z'x=yf'(x^2-z^2)(2x-2zz'x)
[1+2yzf'(x^2-z^2)]z'x=2xyf'(x^2-z^2)-1
z'x=[2xyf'(x^2-z^2)-1]/[1+2yzf'(x^2-z^2)]
两端对y求偏导:
z'y=f(x^2-z^2)+yf'(x^2-z^2)(-2zz'y)
[1+2yzf'(x^2-z^2)]z'y=f(x^2-z^2)
z'y=f(x^2-z^2)/[1+2yzf'(x^2-z^2)]
∴zz'x+yz'y=[2xyzf'(x^2-z^2)-z]/[1+2yzf'(x^2-z^2)]+yf(x^2-z^2)/[1+2yzf'(x^2-z^2)]
=[yf(x^2-z^2)+2xyzf'(x^2-z^2)-z]/[1+2yzf'(x^2-z^2)]
追问
可你知道吗,答案等于x,就是如此的简单,WHY?
追答
再化一步就是了,利用x+z=yf(x^2-z^2),
[yf(x^2-z^2)+2xyzf'(x^2-z^2)-z]/[1+2yzf'(x^2-z^2)]
=[x+z+2xyzf'(x^2-z^2)-z]/[1+2yzf'(x^2-z^2)]
=x
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询