设非齐次线性方程组Ax=b中,系数矩阵A为m*n矩阵,且r(A)=r,则下列结论中正确的是
2个回答
展开全部
答案为A。
解题过程如下:
因为 m = r(A) <= r(A,b) <= m
所以 r(A) = r(A,b)
所以 Ax=b 有解
扩展资料
m × n矩阵的秩最大为m和n中的较小者,表示为 min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。
设A是一组向量,定义A的极大无关组中向量的个数为A的秩。
定义1. 在m*n矩阵A中,任意决定α行和β列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。
例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。
定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询