函数f(x)=2sinxcos(x-π/3)-√3cos^2x+sian(x+π/2)sinx
将函数f(x)按向量a平移后得到函数g(x),且当x=π/3时,g(x)取最大值3,求向量a和g(x)...
将函数f(x)按向量a平移后得到函数g(x),且当x=π/3时,g(x)取最大值3,求向量a和g(x)
展开
2个回答
展开全部
不好意思,我算错了,采纳diger7的回答吧,那个是正解
由于sin(α+π/2)=cosα
所以f(x)=2sinxcos(x-π/3)-√3(cosx)^2+sinxcosx
由于cos(α-β)=cosαcosβ+sinαsinβ
所以f(x)=2sinx(cosxcos(π/3)+sinxsin(π/3))-√3(cosx)^2+sinxcosx
=sinxcosx+√3(sinx)^2-√3(cosx)^2+sinxcosx
=-√3((cosx)^2-(sinx)^2)+2sinxcosx
由于(cosx)^2-(sinx)^2=cos(2x),2sinxcosx=sin(2x)
所以f(x)=-√3cos(2x)+sin(2x)
由于√3=2sin(π/3),1=2cos(π/3)
所以f(x)=2sin(2x)cos(π/3)-2sin(π/3)cos(2x)
由于sin(α-β)=sinαcosβ-sinβcosα
所以f(x)=2sin(2x-π/3)
设向量a为(i,j),则f(x)按(i,j)平移后得到g(x)=2sin(2x-π/3-i)+j
由于g的最大值为3,而2sin(2x-π/3-i)的最大值为2,所以j=3-2=1
而sin(2x-π/3-i)要取最大值,须要2x-π/3-i=π/2+2kπ,k∈Z
题中已知x=π/3时有最大值,即2*π/3-π/3-i=π/2+2kπ,k∈Z
解得i=-π/6-2kπ,k∈Z
(取k'=-k,则k'∈Z,i可写成-π/6+2k'π,k'∈Z,再把k'换成k也没关系,只是好看一些)
由于i=-π/6+2kπ,j=1,所以向量a=(i,j)=(-π/6+2kπ,1),k∈Z
而g(x)=2sin(2x-π/3-i)+j
=2sin(2x-π/3-(-π/6+2kπ))+1
=2sin(2x-π/6-2kπ)+1,k∈Z
由于sin(α-2kπ)=sinα,k∈Z
所以g(x)=2sin(2x-π/6)+1
总结一下,向量a为(-π/6+2kπ,1),k∈Z,g(x)=2sin(2x-π/6)+1
由于sin(α+π/2)=cosα
所以f(x)=2sinxcos(x-π/3)-√3(cosx)^2+sinxcosx
由于cos(α-β)=cosαcosβ+sinαsinβ
所以f(x)=2sinx(cosxcos(π/3)+sinxsin(π/3))-√3(cosx)^2+sinxcosx
=sinxcosx+√3(sinx)^2-√3(cosx)^2+sinxcosx
=-√3((cosx)^2-(sinx)^2)+2sinxcosx
由于(cosx)^2-(sinx)^2=cos(2x),2sinxcosx=sin(2x)
所以f(x)=-√3cos(2x)+sin(2x)
由于√3=2sin(π/3),1=2cos(π/3)
所以f(x)=2sin(2x)cos(π/3)-2sin(π/3)cos(2x)
由于sin(α-β)=sinαcosβ-sinβcosα
所以f(x)=2sin(2x-π/3)
设向量a为(i,j),则f(x)按(i,j)平移后得到g(x)=2sin(2x-π/3-i)+j
由于g的最大值为3,而2sin(2x-π/3-i)的最大值为2,所以j=3-2=1
而sin(2x-π/3-i)要取最大值,须要2x-π/3-i=π/2+2kπ,k∈Z
题中已知x=π/3时有最大值,即2*π/3-π/3-i=π/2+2kπ,k∈Z
解得i=-π/6-2kπ,k∈Z
(取k'=-k,则k'∈Z,i可写成-π/6+2k'π,k'∈Z,再把k'换成k也没关系,只是好看一些)
由于i=-π/6+2kπ,j=1,所以向量a=(i,j)=(-π/6+2kπ,1),k∈Z
而g(x)=2sin(2x-π/3-i)+j
=2sin(2x-π/3-(-π/6+2kπ))+1
=2sin(2x-π/6-2kπ)+1,k∈Z
由于sin(α-2kπ)=sinα,k∈Z
所以g(x)=2sin(2x-π/6)+1
总结一下,向量a为(-π/6+2kπ,1),k∈Z,g(x)=2sin(2x-π/6)+1
展开全部
f(x)=2sinxcos(x-π/3) - √3cos²x + sin(x+π/2)sinx
f(x)=2sinx(cosxcos(π/3) + sinxsin(π/3)) - √3cos²x + (sinxcos(π/2) + sin(π/2)cosx)sinx
f(x)=2sinx(1/2cosx + √3/2sinx) - √3cos²x + sinxcosx
f(x)=sinxcosx + √3sin²x - √3cos²x + sinxcosx
f(x)=2sinxcosx + √3(sin²x-cos²x) //2倍角公式:sin2A=2sinA·cosA cos2A=cos²A-sin²A
f(x)=sin2x -√3cos2x
f(x)=2(cos(π/3)sin2x - sin(π/3)cos2x)
f(x)=2sin(2x-π/3)
∵f(x)=sinx,当x=2kπ+π/2时f(x)取得最大值1
∴f(x)=2sin(2x-π/3),当x=kπ+5/12π时f(x)取得最大值2
∵f(x)是周期为π的周期函数,g(x)是由f(x)平移后得到的,∴g(x)也是周期为π的周期函数
∵当x=π/3时,g(x)取最大值3,且g(x)是周期函数
∴5π/12-π/3=π/12 既π/3=5π/12 - π/12
∴a=(-π/12+kπ,1) k∈Z
g(x)=2sin(2(x-(-π/12-kπ))-π/3)+1 k∈Z
g(x)=2sin(2x-π/6+2kπ)+1 k∈Z
g(x)=2sin(2x-π/6)+1
f(x)=2sinx(cosxcos(π/3) + sinxsin(π/3)) - √3cos²x + (sinxcos(π/2) + sin(π/2)cosx)sinx
f(x)=2sinx(1/2cosx + √3/2sinx) - √3cos²x + sinxcosx
f(x)=sinxcosx + √3sin²x - √3cos²x + sinxcosx
f(x)=2sinxcosx + √3(sin²x-cos²x) //2倍角公式:sin2A=2sinA·cosA cos2A=cos²A-sin²A
f(x)=sin2x -√3cos2x
f(x)=2(cos(π/3)sin2x - sin(π/3)cos2x)
f(x)=2sin(2x-π/3)
∵f(x)=sinx,当x=2kπ+π/2时f(x)取得最大值1
∴f(x)=2sin(2x-π/3),当x=kπ+5/12π时f(x)取得最大值2
∵f(x)是周期为π的周期函数,g(x)是由f(x)平移后得到的,∴g(x)也是周期为π的周期函数
∵当x=π/3时,g(x)取最大值3,且g(x)是周期函数
∴5π/12-π/3=π/12 既π/3=5π/12 - π/12
∴a=(-π/12+kπ,1) k∈Z
g(x)=2sin(2(x-(-π/12-kπ))-π/3)+1 k∈Z
g(x)=2sin(2x-π/6+2kπ)+1 k∈Z
g(x)=2sin(2x-π/6)+1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询