如何使用特征函数求随机变量的期望与方差
展开全部
在特征函数等于0处,求特征函数的一阶与二阶倒数就可以求随机变量的期望与方差。
如果两个随机变量具有相同的特征函数,那么它们具有相同的概率分布; 反之, 如果两个随机变量具有相同的概率分布, 它们的特征函数也相同。
方差数学期望给出了随机变量的平均大小,现实生活中我们还经常关心随机变量的取值在均值周围的散布程度,而方差就是这样的一个数字特征。
方差的作用:
在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。
一般来说,乘积的期望不等于期望的乘积,除非变量相互独立。因此,如果x和y相互独立,则E(xy)=E(x)E(y)E(xy)=E(x)E(y)。期望的运算构成了统计量的运算基础,因为方差、协方差等统计量本质上是一种特殊的期望。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询