如图,在RT△ABC中,∠ACB=90°,CD为AB边上的高,∠CAB的平分线交CD于E,交CB于F,过点F作FG⊥AB于G, 5
1个回答
展开全部
解:根据已知可得
∴ ∠ABC=∠ADC=∠AGF=90º ∠CAF=∠BAF ∠CEF=∠AED
∴△AFC∽△AED ∴∠AED=∠CFE=∠CEF ∴CE=CF
同理可得:∠AED=∠AFG ∴∠AED=∠CEF=∠CFE=∠AFG
∴在△ACF与△AGF中有 ∠CAF=∠GAF ∠ACF=∠AGF=90º 公共边AF
∴ △ACF≌△AGF (AAS) ∴FC=GF
∴在△CEF与△GEF中有 FC=GF ∠CFE=∠GFE 公共边EF
∴ △CEF≌△GEF (SAS)
∴CF=GF CE=GE CE=CF
∴四边形CEGF是菱形
∴ ∠ABC=∠ADC=∠AGF=90º ∠CAF=∠BAF ∠CEF=∠AED
∴△AFC∽△AED ∴∠AED=∠CFE=∠CEF ∴CE=CF
同理可得:∠AED=∠AFG ∴∠AED=∠CEF=∠CFE=∠AFG
∴在△ACF与△AGF中有 ∠CAF=∠GAF ∠ACF=∠AGF=90º 公共边AF
∴ △ACF≌△AGF (AAS) ∴FC=GF
∴在△CEF与△GEF中有 FC=GF ∠CFE=∠GFE 公共边EF
∴ △CEF≌△GEF (SAS)
∴CF=GF CE=GE CE=CF
∴四边形CEGF是菱形
追问
太长了吧
追答
慢慢消化,这样比较详细,好理解……
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询