数学中有哪五种类型的题

 我来答
平凡野望t
2013-01-14 · TA获得超过706个赞
知道小有建树答主
回答量:167
采纳率:0%
帮助的人:121万
展开全部
数学商业上计算的需要、了解数与数之间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习.
一般分为以下几种
代数(一般学数学不会太难,除了一些竞赛的,但如费马大定理一些国际难题,可能会困扰人很长时间)
几何(初中平面几何,高中立体几何都不会太难,但要熟练运用公理,定理,要有一定空间想象力)
实际问题(如一次函数,解方程......多结合生活实际)
函数(中考,高考难点,重点,注意数形结合)
基础(为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托(Georg Cantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,Pioncare也把集合论比作有趣的“病理情形”,Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”。对于这些非难和指责,Cantor仍充满信心,他说:“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.”[1-2] 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性。[1])
古乐宇windy
2013-01-14 · TA获得超过361个赞
知道小有建树答主
回答量:244
采纳率:0%
帮助的人:167万
展开全部
若你是指试卷的:选择、填空、计算、证明、应用
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
008羽
2013-01-14
知道答主
回答量:3
采纳率:0%
帮助的人:2629
展开全部
几何,实际应用,计算,统计,函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
叶缘落尽
2013-12-22
知道答主
回答量:32
采纳率:0%
帮助的人:17.6万
展开全部
填空 选择 计算 解答
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式