在线等答案 在数列{an}中,a1=1/3,a2=5/18,且数列{log2(3an+1-an)}是公差为-1的等差数列,
2个回答
展开全部
数列{log2(3an+1-an)}是公差为-1的等差数列
∴n≥2时,
log₂[3a(n+1)-an]-log₂[3an-a(n-1)]=-1
∴log₂[3a(n+1)-an]+1=log₂[3an-a(n-1)]
∴2[3a(n+1)-an]=3an-a(n-1)
∴[3a(n+1)-an]/[3an-a(n-1)]=1/2
∴{3a(n+1)-an}为等比数列,公比为1/2
∵a1=1/3,a2=5/18
∴3a(n+1)-an=(3a2-a1)*(1/2)^n =1/2ⁿ
∴a(n+1)=1/3*(an+ 1/2ⁿ)
∴a(n+1)-1/2^n=1/3*[an-1/2^(n-1)]
∴[a(n+1)-1/2^n]/[an-1/2^(n-1)]=1/3
∴{an-1/2^(n-1)}为等比数列,公比为1/3
∴an-1/2^(n-1)=(a1-1)*1/3^(n-1)=-2/3*1/3^(n-1)=-2/3ⁿ
∴an=1/2^(n-1)-2/3^n
∴n≥2时,
log₂[3a(n+1)-an]-log₂[3an-a(n-1)]=-1
∴log₂[3a(n+1)-an]+1=log₂[3an-a(n-1)]
∴2[3a(n+1)-an]=3an-a(n-1)
∴[3a(n+1)-an]/[3an-a(n-1)]=1/2
∴{3a(n+1)-an}为等比数列,公比为1/2
∵a1=1/3,a2=5/18
∴3a(n+1)-an=(3a2-a1)*(1/2)^n =1/2ⁿ
∴a(n+1)=1/3*(an+ 1/2ⁿ)
∴a(n+1)-1/2^n=1/3*[an-1/2^(n-1)]
∴[a(n+1)-1/2^n]/[an-1/2^(n-1)]=1/3
∴{an-1/2^(n-1)}为等比数列,公比为1/3
∴an-1/2^(n-1)=(a1-1)*1/3^(n-1)=-2/3*1/3^(n-1)=-2/3ⁿ
∴an=1/2^(n-1)-2/3^n
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询