初中数学............

你若安好yank
2013-11-09
知道答主
回答量:38
采纳率:0%
帮助的人:13.5万
展开全部
(1)观察并猜想:
12+22=(1+0)×1+(1+1)×2=l+0×1+2+1×2=(1+2)+(0×1+1×2)
12+22+32=(1+0)×1+(1+1)×2+(l+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)
12+22+32+42=(1+0)×1+(1+1)×2+(l+2)×3+
(1+3)×4

=1+0×1+2+1×2+3+2×3+
4+3×4

=(1+2+3+4)+(
0×1+1×2+2×3+3×4


(2)归纳结论:
12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+2)×3+…[1+(n-l)]n
=1+0×1+2+1×2+3+2×3+…+n+(n-1)×n
=(
1+2+3+…+n
)+[
0×1+1×2+2×3+…+(n-1)n
]
=
n(n+1)
+
n(n+1)(n-1)


n(n+1)(2n+1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式