设f(a)=2sin(-a)cos(π+a)-cso(π-a)/1+sin²(π+a)+cos(3π/2+a)-sin²(π/2+a)(1+2sina≠0)
1个回答
展开全部
f(a)=2sin(-a)cos(π+a)-cso(π-a)/1+sin²(π+a)+cos(3π/2+a)-sin²(π/2+a)
=(-2sina)(-cosa)-(-cosa)/(1+sin²a)+sina-cos²a
=2sinacosa+cosa/(1+sin²a)+sina-cos²a
=sin2a+cosa/(1+sin²a)+sina-cos²a
f(π/6)=√3/2+(√3/2)/[1+(1/2)²]+1/2-(√3/2)²
=√3/2+(√3/2)/(5/4)+1/2-3/4
=√3/2+4/5×√3/2-1/4
=9/5×√3/2-1/4
=9√3/10-1/4
=(-2sina)(-cosa)-(-cosa)/(1+sin²a)+sina-cos²a
=2sinacosa+cosa/(1+sin²a)+sina-cos²a
=sin2a+cosa/(1+sin²a)+sina-cos²a
f(π/6)=√3/2+(√3/2)/[1+(1/2)²]+1/2-(√3/2)²
=√3/2+(√3/2)/(5/4)+1/2-3/4
=√3/2+4/5×√3/2-1/4
=9/5×√3/2-1/4
=9√3/10-1/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询