已知向量a,b满足|a|=1,(a+b)(a-2b)=0,则|b|的最小值为
1个回答
展开全部
依题意:(a+b) dot (a-2b)=0,即:|a|^2-2|b|^2-a dot b=0
即:1-2|b|^2-|a|*|b|*cos<a.b>=0,所以:cos<a,b>=(1-2|b|^2)/|b|
因为<a,b>∈[0,π],所以cos<a,b>∈[-1,1]
所以:-1≤(1-2|b|^2)/|b|≤1,等价于:(1-2|b|^2)/|b|≤1,(1-2|b|^2)/|b|≥-1
即:2|b|^2+|b|-1≥0,即:(|b|+1)(2|b|-1)≥0-------(1)
|b|^2-|b|-1≤0,即迅旁:(|b|-1)(2|b|+1)≤0---------------(2)
解(1)得:|b|≥1/2或|b|≤-1
解(2)得:-1/2≤|b|≤1
因为:|b|≥0,所以不等式组的解为:此盯1/2≤|b|≤1
所以向量b的模值|b|的森昌和最小值是1/2
即:1-2|b|^2-|a|*|b|*cos<a.b>=0,所以:cos<a,b>=(1-2|b|^2)/|b|
因为<a,b>∈[0,π],所以cos<a,b>∈[-1,1]
所以:-1≤(1-2|b|^2)/|b|≤1,等价于:(1-2|b|^2)/|b|≤1,(1-2|b|^2)/|b|≥-1
即:2|b|^2+|b|-1≥0,即:(|b|+1)(2|b|-1)≥0-------(1)
|b|^2-|b|-1≤0,即迅旁:(|b|-1)(2|b|+1)≤0---------------(2)
解(1)得:|b|≥1/2或|b|≤-1
解(2)得:-1/2≤|b|≤1
因为:|b|≥0,所以不等式组的解为:此盯1/2≤|b|≤1
所以向量b的模值|b|的森昌和最小值是1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询