线性代数矩阵的幂计算方法 15
就比如简单的矩阵-111-1来说,求这个矩阵A^6,这种题怎么求,能随便初等变换吗?1-1-111-1-11-111-1如果更复杂一点点,矩阵B=3000,求B的n次方这...
就比如简单的矩阵 -1 1 1 -1来说,求这个矩阵A^6,这种题怎么求,能随便初等变换吗?
1 -1 -1 1
1 -1 -1 1
-1 1 1 -1
如果更复杂一点点,矩阵B=3 0 0 0,求B的n次方这种题呢?
0 3 0 0
0 0 3 1
0 0 4 3 展开
1 -1 -1 1
1 -1 -1 1
-1 1 1 -1
如果更复杂一点点,矩阵B=3 0 0 0,求B的n次方这种题呢?
0 3 0 0
0 0 3 1
0 0 4 3 展开
3个回答
展开全部
一般有以下几种方法
1. 计算A^2,A^3 找规律, 然后用归纳法证明
2. 若r(A)=1, 则A=αβ^T, A^n=(β^Tα)^(n-1)A
注: β^Tα =α^Tβ = tr(αβ^T)
3. 分拆法: A=B+C, BC=CB, 用二项式公式展开
适用于 B^n 易计算, C的低次幂为零矩阵: C^2 或 C^3 = 0.
4. 用对角化 A=P^-1diagP
A^n = P^-1diag^nP
比如第一题适合用第2种方法, A=(-1,1,1,-1)^T (1,-1,-1,1)
第二题适合用第4种方法, 这要学过特征值特征向量后才行
1. 计算A^2,A^3 找规律, 然后用归纳法证明
2. 若r(A)=1, 则A=αβ^T, A^n=(β^Tα)^(n-1)A
注: β^Tα =α^Tβ = tr(αβ^T)
3. 分拆法: A=B+C, BC=CB, 用二项式公式展开
适用于 B^n 易计算, C的低次幂为零矩阵: C^2 或 C^3 = 0.
4. 用对角化 A=P^-1diagP
A^n = P^-1diag^nP
比如第一题适合用第2种方法, A=(-1,1,1,-1)^T (1,-1,-1,1)
第二题适合用第4种方法, 这要学过特征值特征向量后才行
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
先变换对角阵,然后求n次方,这个时候只有对角上的元素变化,对角的元素乘方。
乘完之后,再做反变换,就得到你希望的矩阵了。
乘完之后,再做反变换,就得到你希望的矩阵了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一般解法是求出矩阵的Jordan标准型及过渡矩阵
设矩阵A的Jordan标准型为J,P是可逆矩阵使得A=PJP^(-1),则A^k=PJ^KP^(-1)
J的形式比较简单,它除了对角线及对角线上面一斜列不为0外,其他位置全为0,J的幂次很容易计算。
设矩阵A的Jordan标准型为J,P是可逆矩阵使得A=PJP^(-1),则A^k=PJ^KP^(-1)
J的形式比较简单,它除了对角线及对角线上面一斜列不为0外,其他位置全为0,J的幂次很容易计算。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询