在平面直角坐标系中,已知点A(1,5),B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标()
展开全部
你找张草稿纸,作A关于x轴的对称点A1(1下标)为(1,-5),在x轴上任取M,可以得到AM=A1M,即AM-BM=A1M-BM.
然后连接A1M A1B BM,
在三角形A1BM中,两边之差小于第三边,所以A1M-BM<A1B.
由此,当M在A1B延长线上时,A1M-BM值最大,也就是AM-BM值最大。
然后可以求一下A1B的方程,把M解出来。应该是(3.5,0)
呼~很认真地做了,要悬赏啊~~~~~ >-<
然后连接A1M A1B BM,
在三角形A1BM中,两边之差小于第三边,所以A1M-BM<A1B.
由此,当M在A1B延长线上时,A1M-BM值最大,也就是AM-BM值最大。
然后可以求一下A1B的方程,把M解出来。应该是(3.5,0)
呼~很认真地做了,要悬赏啊~~~~~ >-<
追问
可以把方程列一下吗?谢谢!
悬赏一定有
追答
设方程为y=kx+b
分别将A1点、B点带入
得到
-5=k+b
-1=3k+b
这个方程组
解出k和b
就可以得到A1B的方程了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询