三角形ABC中b=2√2 c=1 tanB=2√2则a=
5个回答
展开全部
解:因为 cosB=正负根号{1/[1+(tanB)^2]},
tanB=2根号2大于0,
所以 cosB=根号{1/[1+(tanB)^2]}
=根号{1/[1+(2根号2)^2]}
=根号[1/(1+8)]
=根号(1/9)
=1/3,
因为 在三角形ABC中,b=2根号2,c=1,cosB=1/3,
所以 由余弦定理 b^2=a^2+c^2--2accosB
可得: (2根号2)^2=a^2+1^2--2xax1x(1/3)
8=a^2+1--(2/3)a
即: 3a^2--2a--21=0
(3a+7)(a--3)=0
因为 边长a大于0,
所以 3a+7大于0,
所以 只有 a--3=0,a=3。
tanB=2根号2大于0,
所以 cosB=根号{1/[1+(tanB)^2]}
=根号{1/[1+(2根号2)^2]}
=根号[1/(1+8)]
=根号(1/9)
=1/3,
因为 在三角形ABC中,b=2根号2,c=1,cosB=1/3,
所以 由余弦定理 b^2=a^2+c^2--2accosB
可得: (2根号2)^2=a^2+1^2--2xax1x(1/3)
8=a^2+1--(2/3)a
即: 3a^2--2a--21=0
(3a+7)(a--3)=0
因为 边长a大于0,
所以 3a+7大于0,
所以 只有 a--3=0,a=3。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:作高AD。
∵tanB=AD/BD=2√2
AD²+BD²=AB²=1
∴AD=2/3*√2 BD=1/3
∵CD²﹢AD²=AC²=8
∴CD=4/3*√2
∴a=BC=BD﹢CD=1/3﹢4/3*√2
∵tanB=AD/BD=2√2
AD²+BD²=AB²=1
∴AD=2/3*√2 BD=1/3
∵CD²﹢AD²=AC²=8
∴CD=4/3*√2
∴a=BC=BD﹢CD=1/3﹢4/3*√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
tanB>0 -> cosB=1/3
COSB=(a^2+1-8)/(2a)=1/3 a=3
COSB=(a^2+1-8)/(2a)=1/3 a=3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
B的正弦值正好是b与c之比,因此b与c所夹的角为直角,由于这是一个直角三角形,b 与c 是直角边,因此a 为斜边。用勾股定理计算可以得到a=3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询