二重积分 怎么把极坐标转为直角坐标系的形式?
在数学中,极坐标系是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。
正如所有的二维坐标系,极坐标系也有两个坐标轴:
(半径坐标)和
(角坐标、极角或方位角,有时也表示为
或
。
坐标表示与极点的距离,
坐标表示按逆时针方向坐标距离0°射线(有时也称作极轴)的角度,极轴就是在平面直角坐标系中的x轴正方向。
比如,极坐标中的(3, 60°)表示了一个距离极点3个单位长度、和极轴夹角为60°的点。(−3, 240°)和(3, 60°)表示了同一点,因为该点的半径为在夹角射线反向延长线上距离极点3个单位长度的地方(240° − 180° = 60°)。
极坐标系中一个重要的特性是,平面直角坐标中的任意一点,可以在极坐标系中有无限种表达形式。通常来说,点(r, θ)可以任意表示为(r, θ ±n×360°)或(−r, θ ± (2n+ 1)180°),这里n是任意整数。如果某一点的r坐标为0,那么无论θ取何值,该点的位置都落在了极点上。
使用弧度单位
极坐标系中的角度通常表示为角度或者弧度,使用公式2π*rad= 360°。具体使用哪一种方式,基本都是由使用场合而定。航海方面经常使用角度来进行测量,而物理学的某些领域大量使用到了半径和圆周的比来作运算,所以物理方面更倾向使用弧度。
极坐标系与平面直角坐标系之间的变换
从极坐标
和
可以变换为直角坐标:
或:
希望我能帮助你解疑释惑。
2024-08-07 广告