定积分证明
1个回答
展开全部
let
u=π-x
du = -dx
x=π/2 , u=π/2
x=π, u=0
∫(0->π) (sinx)^n dx
=∫(0->π/2) (sinx)^n dx + ∫(π/2->π) (sinx)^n dx
=∫(0->π/2) (sinx)^n dx + ∫(π/2->0) (sinu)^n ( -du)
=∫(0->π/2) (sinx)^n dx + ∫(0->π/2) (sinu)^n du
=∫(0->π/2) (sinx)^n dx + ∫(0->π/2) (sinx)^n dx
=2∫(0->π/2) (sinx)^n dx
u=π-x
du = -dx
x=π/2 , u=π/2
x=π, u=0
∫(0->π) (sinx)^n dx
=∫(0->π/2) (sinx)^n dx + ∫(π/2->π) (sinx)^n dx
=∫(0->π/2) (sinx)^n dx + ∫(π/2->0) (sinu)^n ( -du)
=∫(0->π/2) (sinx)^n dx + ∫(0->π/2) (sinu)^n du
=∫(0->π/2) (sinx)^n dx + ∫(0->π/2) (sinx)^n dx
=2∫(0->π/2) (sinx)^n dx
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询