(2012•重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,A
3个回答
展开全部
解:(1)如图①,
设正方形BEFG的边长为x,
则BE=FG=BG=x,
∵AB=3,BC=6,
∴AG=AB﹣BG=3﹣x,悔郑
∵GF∥BE,
∴△AGF∽△ABC,
∴,
即袜前冲,
解得:x=2,
即BE=2;
(2)存在满足条件的t,
理由:如图②,过点D作DH⊥BC于H,
则BH=AD=2,DH=AB=3,
由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,
在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,
∵EF∥AB,
∴△MEC∽△ABC,
∴,即,
∴ME=2﹣t,
在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,
过点M作MN⊥DH于N,
则MN=HE=t,NH=ME=2﹣t,
∴DN=DH﹣NH=3﹣(2﹣t)=t+1,
在Rt△DMN中,DM2=DN2+MN2=t2+t+1,
(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,
即t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),
解得:t=,
(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,
即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),
解得:t1=﹣3+,t2=﹣3﹣(舍告歼去),
∴t=﹣3+;
(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,
即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),
此方程无解,
综上所述,当t=或﹣3+时,△B′DM是直角三角形;
(3)①如图③,当F在CD上时,EF:DH=CE:CH,
即2:3=CE:4,
∴CE=,
∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,
∵ME=2﹣t,
∴FM=t,
当0≤t≤时,S=S△FMN=×t×t=t2,
②当G在AC上时,t=2,
∵EK=EC•tan∠DCB=EC•=(4﹣t)=3﹣t,
∴FK=2﹣EK=t﹣1,
∵NL=AD=,
∴FL=t﹣,
∴当<t≤2时,S=S△FMN﹣S△FKL=t2﹣(t﹣)(t﹣1)=﹣t2+t﹣;
③如图⑤,当G在CD上时,B′C:CH=B′G:DH,
即B′C:4=2:3,
解得:B′C=,
∴EC=4﹣t=B′C﹣2=,
∴t=,
∵B′N=B′C=(6﹣t)=3﹣t,
∵GN=GB′﹣B′N=t﹣1,
∴当2<t≤时,S=S梯形GNMF﹣S△FKL=×2×(t﹣1+t)﹣(t﹣)(t﹣1)=﹣t2+2t﹣,
④如图⑥,当<t≤4时,
∵B′L=B′C=(6﹣t),EK=EC=(4﹣t),B′N=B′C=(6﹣t)EM=EC=(4﹣t),
S=S梯形MNLK=S梯形B′EKL﹣S梯形B′EMN=﹣t+.
综上所述:
当0≤t≤时,S=t2,
当<t≤2时,S=﹣t2+t﹣;
当2<t≤时,S=﹣t2+2t﹣,
当<t≤4时,S=﹣t+.
设正方形BEFG的边长为x,
则BE=FG=BG=x,
∵AB=3,BC=6,
∴AG=AB﹣BG=3﹣x,悔郑
∵GF∥BE,
∴△AGF∽△ABC,
∴,
即袜前冲,
解得:x=2,
即BE=2;
(2)存在满足条件的t,
理由:如图②,过点D作DH⊥BC于H,
则BH=AD=2,DH=AB=3,
由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,
在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,
∵EF∥AB,
∴△MEC∽△ABC,
∴,即,
∴ME=2﹣t,
在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,
过点M作MN⊥DH于N,
则MN=HE=t,NH=ME=2﹣t,
∴DN=DH﹣NH=3﹣(2﹣t)=t+1,
在Rt△DMN中,DM2=DN2+MN2=t2+t+1,
(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,
即t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),
解得:t=,
(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,
即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),
解得:t1=﹣3+,t2=﹣3﹣(舍告歼去),
∴t=﹣3+;
(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,
即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),
此方程无解,
综上所述,当t=或﹣3+时,△B′DM是直角三角形;
(3)①如图③,当F在CD上时,EF:DH=CE:CH,
即2:3=CE:4,
∴CE=,
∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,
∵ME=2﹣t,
∴FM=t,
当0≤t≤时,S=S△FMN=×t×t=t2,
②当G在AC上时,t=2,
∵EK=EC•tan∠DCB=EC•=(4﹣t)=3﹣t,
∴FK=2﹣EK=t﹣1,
∵NL=AD=,
∴FL=t﹣,
∴当<t≤2时,S=S△FMN﹣S△FKL=t2﹣(t﹣)(t﹣1)=﹣t2+t﹣;
③如图⑤,当G在CD上时,B′C:CH=B′G:DH,
即B′C:4=2:3,
解得:B′C=,
∴EC=4﹣t=B′C﹣2=,
∴t=,
∵B′N=B′C=(6﹣t)=3﹣t,
∵GN=GB′﹣B′N=t﹣1,
∴当2<t≤时,S=S梯形GNMF﹣S△FKL=×2×(t﹣1+t)﹣(t﹣)(t﹣1)=﹣t2+2t﹣,
④如图⑥,当<t≤4时,
∵B′L=B′C=(6﹣t),EK=EC=(4﹣t),B′N=B′C=(6﹣t)EM=EC=(4﹣t),
S=S梯形MNLK=S梯形B′EKL﹣S梯形B′EMN=﹣t+.
综上所述:
当0≤t≤时,S=t2,
当<t≤2时,S=﹣t2+t﹣;
当2<t≤时,S=﹣t2+2t﹣,
当<t≤4时,S=﹣t+.
展开全部
(1)首先设正方形BEFG的边长为x,易得△AGF∽△ABC,根据相似三角形的对应边成比例,即可求得BE的长;
(2)首先利用△MEC∽△ABC与勾股定理,求得B′M,DM与B′D的平方,然后分别从若∠DB′M=90°,则DM2=B′M2+B′D2,若∠纳晌运DB′M=90°,则DM2=B′M2+B′D2,若∠B′DM=90°,则B′M2=B′D2+DM2去分析,即可得到方洞梁程,解方程即可求得答案谨慎;
(3)分别从当0≤t≤
43
时,当
43
<t≤2时,当2<t≤
103
时,当
103
<t≤4时去分析求解即可求得答案.
(2)首先利用△MEC∽△ABC与勾股定理,求得B′M,DM与B′D的平方,然后分别从若∠DB′M=90°,则DM2=B′M2+B′D2,若∠纳晌运DB′M=90°,则DM2=B′M2+B′D2,若∠B′DM=90°,则B′M2=B′D2+DM2去分析,即可得到方洞梁程,解方程即可求得答案谨慎;
(3)分别从当0≤t≤
43
时,当
43
<t≤2时,当2<t≤
103
时,当
103
<t≤4时去分析求解即可求得答案.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
图????
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询