∫1/√x(1-x)dx 计算结果是多少, 我算出来是 2arcsin(√x)+c,课后答案给出的是arcsin(2x-1)+c;
两个答案都是正确的,因为不定积分的结果是函数曲线族
他们每个对应坐标之间都相隔着相等的距离
就如这题
∫ dx/√[x(1 - x)] = ∫ dx/√(x - x²) = ∫ dx/[1/4 - (1/4)(2x - 1)²] = ∫ d(2x - 1)/[1 - (2x - 1)²]
= arcsin(2x - 1) + C
∫ dx/√[x(1 - x)] = ∫ (2u du)/[u√(1 - u²)] = 2arcsin√x + C,u = √x,dx = 2u du
在x∈[0,1]
设y = 2arcsin√x,y ≥ 0
sin(y/2) = √x,cos(y/2) = √(1 - x)
cosy = cos²(y/2) - sin²(y/2) = (1 - x) - x = 1 - 2x
所以y = arccos(1 - 2x) = π/2 - arcsin(1 - 2x) = π/2 + arcsin(2x - 1)
即2arcsin√x = π/2 + arcsin(2x - 1)
所以
∫ dx/[x(1 - x)]
= 2arcsin√x + C
= [π/2 + arcsin(2x - 1)] + C
= arcsin(2x - 1) + (π/2 + C)
= arcsin(2x - 1) + C',C' = π/2 + C