求当n趋近无穷大时(1+2的n次方+3的n次方)的n分之一次方的极限,帮帮忙解一下,不知怎么解。。。要有步骤
展开全部
考虑函数y=ln(1+2^x+3^x)/x,用罗比达法则:
∵lim(x-->+∞)ln(1+2^x+3^x)/x
=lim(x-->+∞)(2^xln2+3^xln3)/(1+2^x+3^x)
=lim(x-->+∞)[2^x(ln2)^2+3^x(ln3)^2]/(2^xln2+3^xln3)
=lim(x-->+∞)[(2/3)^x(ln2)^2+(ln3)^2]/[(2/3)^xln2+ln3]
=(ln3)^2/ln3
=ln3
∴lim(x-->+∞)(1+2^x+3^x)^(1/x)=3
从而 lim(n-->+∞)(1+2^n+3^n)^(1/n)=3
∵lim(x-->+∞)ln(1+2^x+3^x)/x
=lim(x-->+∞)(2^xln2+3^xln3)/(1+2^x+3^x)
=lim(x-->+∞)[2^x(ln2)^2+3^x(ln3)^2]/(2^xln2+3^xln3)
=lim(x-->+∞)[(2/3)^x(ln2)^2+(ln3)^2]/[(2/3)^xln2+ln3]
=(ln3)^2/ln3
=ln3
∴lim(x-->+∞)(1+2^x+3^x)^(1/x)=3
从而 lim(n-->+∞)(1+2^n+3^n)^(1/n)=3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询